A Law of Large Numbers for Slot Machines

In this paper we apply Bernoulli's Theorem to prove a law of large numbers for slot machines.

A slot machine returns different amounts in prizes .For example, the \$1 Red White and Blue slot machine described on The Wizard of Odds website can return a prize of \$1, \$2, \$5, \$10, \$20, \$25, \$40, \$50, \$80, \$150, \$200, \$1,199, or \$2,400 for a total of 13 possible returns (not counting zero).

Let K be the number of different possible returns. For the Red White and Blue slot machine, K = 13.

Let $R_1, R_2, ..., R_K$ be the different possible returns Let $P_1, P_2, ..., P_K$ be their probabilities.

Let M_i be the number of times in N trials that a return of R_i occurs.

Let:

Event A₁ be
$$\left|\frac{M_1}{N} - P_1\right| < \frac{\varepsilon}{KR_1}$$

Event A₂ be $\left|\frac{M_2}{N} - P_2\right| < \frac{\varepsilon}{KR_2}$
*
*
Event A_K be $\left|\frac{M_K}{N} - P_K\right| < \frac{\varepsilon}{KR_K}$

If events A_1 , A_2 , ..., A_K all occur, then:

$$\left|\frac{R_1M_1}{N} - R_1P_1\right| < \frac{\varepsilon}{K}$$
$$\left|\frac{R_2M_2}{N} - R_2P_2\right| < \frac{\varepsilon}{K}$$
$$*$$

$$\left|\frac{R_{K}M_{K}}{N} - R_{K}P_{K}\right| < \frac{\varepsilon}{K}$$

all occur and $\left|\frac{R_1M_1 + R_2M_2 + \dots + R_KM_K}{N} - (R_1P_1 + R_2P_2 + \dots + R_KP_K)\right| < \varepsilon$ will also occur, where $R_1M_1 + R_2M_2 + \dots + R_KM_K$ is the total return in N trials and $R_1P_1 + R_2P_2 + \dots + R_KP_K$ is the expected return per trial.

So | Actual Return per trial - Expected Return per trial | $\leq \epsilon$

occurs if the events A_1 , A_2 ,, A_K all occur.

Lemma

Let $P(A_1)$, $P(A_2)$, ..., $P(A_K)$ be the probabilities that A_1 , A_2 , ..., A_K occur, then the probability $P(A_1A_2 \dots A_K)$ that all the events occur is $\ge P(A_1) + P(A_2) + \dots + P(A_K) - (K-1)$.

(See proof below)

By Bernoulli's Theorem, the probability that a given one of the events occurs will be greater than $1 - \frac{\eta}{K}$ if N is sufficiently large. So if N is sufficiently large, P(A₁), P(A₂), ..., P(A_K) will each be greater than $1 - \frac{\eta}{K}$ So by the lemma, if N is sufficiently large, the probability that all the events occur will be $\geq K(1 - \frac{\eta}{K}) - (K - 1) = 1 - \eta$.

So if N is sufficiently large, the probability that :

| Actual Return per trial - Expected Return per trial | $< \varepsilon$ will be

be greater than $1 - \eta$. The theorem is proved.

Proof of the lemma

Consider the case k = 2.

Let \overline{A}_1 be the event that A_1 does not occur and let \overline{A}_2 be the event that A_2 does not occur.

 $P(A_1) = P(A_1A_2) + P(A_1\overline{A}_2)$ $P(A_2) = P(A_1A_2) + P(\overline{A}_1A_2)$ $P(A_1A_2) + P(A_1\overline{A}_2) + P(\overline{A}_1A_2) + P(\overline{A}_1\overline{A}_2) = 1$ So $P(A_1) + P(A_2) - 1 = P(A_1A_2) - P(\overline{A}_1\overline{A}_2)$.
So $= P(A_1A_2) \ge P(A_1) + P(A_2) - 1$

with equality only if $P(\overline{A}_1 \ \overline{A}_2) = 0$.

If K > 2, then just like before there will be probability K-tuples. For example, if K = 4, one of the possible probability K-tuples would be $P(A_1 \overline{A_2} \overline{A_3} A_4)$. This is the probability that events A_1 and A_4 both occur and that events A_2 and A_3 don't occur. This probability ktuple is said to have two bars.

The sum of all the possible probability K-tuples is one. So when K - 1 is subtracted, each probability K-tuple is subtracted K-1 times.

 $P(A_i)$ is the sum of all the probability K-tuples in which A_i does not have a bar over it. Any probability K-tuple which has a bar over A_i is not included.

So every probability K-tuple with one bar will not be included in one of the $P(A_i)$'s, so it will only be counted K - 1 times in the sum $P(A_1)+P(A_2)+...+P(A_K)$. So since it is being subtracted K - 1 times, no probability K-tuple with one bar will be in the answer.

If a probability K-tuple has two bars, it won't be included in two of the $P(A_i)$'s, so it will only be counted K - 2 times in the sum $P(A_1)+P(A_2)+...+P(A_K)$. So since it is being subtracted K - 1 times, it will occur once in the answer as a negative amount.

If a probability K-tuple has three bars, it won't be included in three of the $P(A_i)$'s, so it will only be counted K - 3 times in the sum $P(A_1)+P(A_2)+...+P(A_K)$. So since it is being subtracted K - 1 times, it will occur in the answer twice, each time as a negative amount. The only probability K-tuple to occur K times is the one with no bars, $P(A_1A_2...A_K)$. So since it is being subtracted K - 1 times, it will occur in the answer once as a positive amount.

So $P(A_1)+P(A_2)+...+P(A_K) - (K - 1) =$

 $P(A_1A_2...A_K)$ - the sum of all probability K-tuples with two bars twice the sum of all probability K-tuples with three bars and so on. So $P(A_1A_2...A_K) \ge P(A_1)+P(A_2)+...+P(A_K) - (K - 1)$ with equality only if all the probability K-tuples with two or more bars have a probability of zero.

The lemma is proved.

Comment

The Red White and Blue slot machine described on the Wizard of Odds website has an expected return of .8658 and a variance of 82.12. Using Chebyshev's Inequality, the N needed to guarantee that the probability that

```
the | Actual Return per trial - Expected Return per trial | < .05 will be greater than 1 - .05 is 656,960.
```

Combining the Bernoulli theorem formulas with the proof given above one gets an N of over two trillion.

So for the Slot Machine problem Chebyshev's proof of the Law of Large Numbers is much better.

Daniel Daniels