A Law of Large Numbers for Slot Machines

In this paper we apply Bernoulli's Theorem to prove a law of large numbers for slot machines.

 A slot machine returns different amounts in prizes .For example, the \$1 Red White and Blue slot machine described on The Wizard of Odds website can return a prize of \$1, \$2, \$5, \$10, \$20, \$25, \$40, \$50, \$80, \$150, \$200, \$1,199, or \$2,400 for a total of 13 possible returns (not counting zero).

Let K be the number of different possible returns. For the Red White and Blue slot machine, $K = 13$.

Let R_1 , R_2 , ..., R_k be the different possible returns Let P_1 , P_2 , ..., P_k be their probabilities.

Let M_i be the number of times in N trials that a return of R_i occurs.

Let:

Event A₁ be

\n
$$
\left| \frac{M_1}{N} - P_1 \right| < \frac{\varepsilon}{KR_1}
$$
\nEvent A₂ be

\n
$$
\left| \frac{M_2}{N} - P_2 \right| < \frac{\varepsilon}{KR_2}
$$
\n*

If events A_1 , A_2 , ..., A_k all occur, then:

If events A₁, A₂, ..., A_K all occur,
\nthen:
\n
$$
\left| \frac{R_1 M_1}{N} - R_1 P_1 \right| < \frac{\varepsilon}{K}
$$
\n
$$
\left| \frac{R_2 M_2}{N} - R_2 P_2 \right| < \frac{\varepsilon}{K}
$$
\n*
\n*
\n*
\n
$$
\left| \frac{R_K M_K}{N} - R_K P_K \right| < \frac{\varepsilon}{K}
$$
\n
$$
\left| \frac{R_K M_K}{N} - R_K P_K \right| < \frac{\varepsilon}{K}
$$
\n
$$
\left| \frac{R_1 M_1 + R_2 M_2 + \dots + R_K M_K}{N} - (R_1 P_1 + R_2 P_2 + \dots + R_K P_K) \right|
$$

$$
\left|\frac{R_K M_K}{N} - R_K P_K\right| < \frac{\varepsilon}{K}
$$

all occur and $\left| \frac{K_1M_1 + K_2M_2 + \dots + K_KM_K}{N} - (R_1P_1 + R_2P_2 + \dots + R_KP_K) \right| < \varepsilon$ $\frac{\varepsilon}{K}$
 $\frac{\varepsilon}{K}$
 $\frac{R_1M_1 + R_2M_2 + ... + R_KM_K}{N} - (R_1P_1 + R_2P_2 + ... + R_KP_K)$
 $\frac{R_1M_1 + R_2M_2 + ... + R_KM_K}{N}$ is the total return in
 $R_1P_1 + R_2P_2 + ... + R_KP_K$ is the expected return per trial. N $($ -1⁻¹⁻¹ $-$ -2² $²$ $²$ $³$ $⁴$ </sup></sup></sup></sup> $\left| \frac{K M_K}{K} - (R_1 P_1 + R_2 P_2 + \dots + R_K P_K) \right| < \varepsilon$
 $M_2 + \dots + R_K M_K$ is the total return in
 P_K is the expected return per trial. $\binom{k P_K}{k}$ < ε
tal return in
n per trial. $\frac{\varepsilon}{K}$
 $\frac{\varepsilon}{K}$
 $\frac{1 M_1 + R_2 M_2 + + R_K M_K}{N} - (R_1 P_1 + R_2 P_2 + + R_K P_K)$

where $R_1 M_1 + R_2 M_2 + + R_K M_K$ is the total return in
 $P_1 + R_2 P_2 + + R_K P_K$ is the expected return per trial. $\left| P_1 + R_2 P_2 + \dots + R_K P_K \right| < \varepsilon$
R_KM_K is the total return in
expected return per trial. $\frac{+R_2M_2+\dots+R_KM_K}{N} - (R_1P_1 + R_2P_2 + \dots + R_KP_K)$ $\leq \varepsilon$
 $\text{R}^2 + R_1M_1 + R_2M_2 + \dots + R_KM_K$ is the total return in
 $\text{R}^2 + \dots + \text{R}^2$ is the expected return per trial $-(R_1P_1 + R_2P_2 ++R_KP_K)$
 $\left|\leq \varepsilon\right|$
 $\ldots + R_K M_K$ is the total return in

is the expected return per trial. $\left|\frac{...+R_K M_K}{...+R_K P_K} - (R_1 P_1 + R_2 P_2 + ... + R_K P_K)\right| < \varepsilon$
 $\left|\frac{1}{1} + R_2 M_2 + ... + R_K M_K\right|$ is the total return in
 $\left|\frac{1}{1 + R_K P_K}\right|$ is the expected return per trial. will also occur, where $R_1M_1 + R_2M_2 + \dots + R_KM_K$ is the total return in N trials and $R_1P_1+R_2P_2+....+R_KP_K$ is the expected return per trial.

So | Actual Return per trial - Expected Return per trial $\vert \leq \varepsilon$

occurs if the events A_1 , A_2 , ..., A_k all occur.

Lemma

Let $P(A_1), P(A_2), \dots, P(A_K)$ be the probabilities that A_1 , A_2 ,, A_K occur, then the probability $P(A_1A_2....A_K)$ that all the events occur is $\ge P(A_1) + P(A_2) + \dots + P(A_K) - (K-1)$.

(See proof below)

By Bernoulli's Theorem, the probability that a given one of the events occurs will be greater than $1 - \frac{\eta}{r}$ if N is sufficiently large. So K if N is sufficiently large, $P(A_1)$, $P(A_2)$,, $P(A_K)$ will each be greater than $1 - \frac{\eta}{K}$ So by the lemma, if N is sufficiently large, the K probability that all the events occur will be $\geq K(1 - \frac{\eta}{K})-(K-1)$ = K^{\prime} (\rightarrow \rightarrow \rightarrow $1 - \eta$.

So if N is sufficiently large, the probability that :

| Actual Return per trial - Expected Return per trial $|<\varepsilon$ will be

be greater than $1 - \eta$. The theorem is proved.

Proof of the lemma

Consider the case $k = 2$.

Let \overline{A}_1 be the event that A_1 does not occur and let \overline{A}_2 be the event that A_2 does not occur.

$$
P(A_1) = P(A_1A_2) + P(A_1\overline{A}_2)
$$

\n
$$
P(A_2) = P(A_1A_2) + P(\overline{A}_1A_2)
$$

\n
$$
P(A_1A_2) + P(A_1\overline{A}_2) + P(\overline{A}_1A_2) + P(\overline{A}_1\overline{A}_2) = 1
$$

\nSo
$$
P(A_1) + P(A_2) - 1 = P(A_1A_2) - P(\overline{A}_1\overline{A}_2).
$$

\nSo
$$
P(A_1A_2) \ge P(A_1) + P(A_2) - 1
$$

with equality only if $P(\overline{A}_1 \overline{A}_2) = 0$.

If $K > 2$, then just like before there will be probability K-tuples. For example, if $K = 4$, one of the possible probability K-tuples would be $P(A_1 \overline{A}_2 \overline{A}_3 A_4)$. This is the probability that events A_1 and A_4 both occur and that events A_2 and A_3 don't occur. This probability ktuple is said to have two bars.

The sum of all the possible probability K-tuples is one. So when K - 1 is subtracted, each probability K-tuple is subtracted K-1 times.

 $P(A_i)$ is the sum of all the probability K-tuples in which A_i does not have a bar over it. Any probability K-tuple which has a bar over A_i is not included.

So every probability K-tuple with one bar will not be included in one of the $P(A_i)$'s, so it will only be counted K - 1 times in the sum $P(A_1) + P(A_2) + \dots + P(A_K)$. So since it is being subtracted K - 1 times, no probability K-tuple with one bar will be in the answer.

 If a probability K-tuple has two bars, it won't be included in two of the $P(A_i)$'s, so it will only be counted K - 2 times in the sum $P(A_1) + P(A_2) + \dots + P(A_K)$. So since it is being subtracted K - 1 times, it will occur once in the answer as a negative amount.

If a probability K-tuple has three bars, it won't be included in three of the $P(A_i)$'s, so it will only be counted K - 3 times in the sum $P(A_1) + P(A_2) + \dots + P(A_K)$. So since it is being subtracted K - 1 times, it will occur in the answer twice, each time as a negative amount. The only probability K-tuple to occur K times is the one with no bars, $P(A_1A_2...A_k)$. So since it is being subtracted K - 1 times, it will occur in the answer once as a positive amount.

So $P(A_1)$ + $P(A_2)$ ++ $P(A_K)$ - (K - 1) =

 $P(A_1A_2...A_k)$ - the sum of all probability K-tuples with two bars twice the sum of all probability K-tuples with three bars and so on. So $P(A_1A_2...A_K) \ge P(A_1)+P(A_2)+....+P(A_K)$ - (K - 1) with equality only if all the probability K-tuples with two or more

bars have a probability of zero.

The lemma is proved.

Comment

The Red White and Blue slot machine described on the Wizard of Odds website has an expected return of .8658 and a variance of 82.12. Using Chebyshev's Inequality, the N needed to guarantee that the probability that the | Actual Return per trial - Expected Return per trial $| < .05$ will be greater than $1 - .05$ is 656,960.

Combining the Bernoulli theorem formulas with the proof given above one gets an N of over two trillion.

So for the Slot Machine problem Chebyshev's proof of the Law of Large Numbers is much better.

Daniel Daniels